價格:免費
更新日期:2019-04-21
檔案大小:6.0M
目前版本:9.2
版本需求:Android 4.0.3 以上版本
官方網站:http://www.navavision.com
Email:navavision2000@gmail.com
聯絡地址:159/4, 2nd Floor, Sumathi Vital Nilaya, Vignana Nagar Main Road, Above Tasty Bite bakery, Vignana Nagar, Bangalore-75
Nava Vedic Mathematics Level 5: This App introduces Vedic Mathematics in simple way with step by step explanation using two formats:
PDF Format – Text format
Classroom video – Audio and video format
The content of Nava Vedic Mathematics App Level 5 is:
SOLVING SIMPLE EQUATIONS - Introduction, Types of Simple Equations - Type 1: ax + b = cx + d;Type 2: (x + a) (x + b) = (x + c) (x + d); Type 3: ((ax + b)/(cx + d) = m/n );Type 4: (m/(x + a) + n/(x + b) = 0);Type 5: (m/(x + a) + n/(x + b)+ p/(x + c)= 0, m + n + p = 0);Type 6: [Case (1): ax + bx = cx + dx, Case (2): m (x + a) = n (x + b), Case (3): (x + a) (x + b) = (x + c) (x + d), Case (4): m/(ax + b) + m/(cx + d) = 0, Case (5): (ax + b)/(ax + c) = (ax + c)/(ax + b) - Case (1): When N1 + N2 = D1 + D2,Case (2): When N1 + N2 = K (D1 + D2)]; Type 7: (ax + b)/(cx + d) = (cx + d)/(ax + b) - Case (1): When N1 = D2 And N2 = D1, Case (2): When N1 ≠ D2 And N2 ≠ D1, Case (3): When N1 = N2 = N3 = N4 And D1 + D2 = D3 + D4, Case (4): When N1 ≠ N2 ≠ N3 ≠ N4 And D1 + D2 = D3 + D4, Case (5): (N1 )/D1 - N2/D2 = (N3 )/D3 - N4/D4 When N1=N2=N3=N4 And D1+D2 = D3+D4;
SOLVING QUADRATIC EQUATIONS - Introduction,Types of Quadratic Equations - TYPE 1: x + 1/x = m/n; TYPE 2: x - 1/x = m/n; TYPE 3: N1/D1 = N2/D2; TYPE 4 - CASE 1: a/(x+a)+ b/(x+b)= c/(x+c)+ d/(x+d); CASE 2: a/(x+a)+ b/(x+b)= (a - c)/(x + a-c )+ (b + c)/(x + c + d) ; CASE 3:(a - b)/(x + a - b)+ (b – c)/(x + b – c)= (a + b)/(x + a + b )+ (b + c)/(x – b – c) ; CASE 4: (a + b)/(x + a + b)+ (b + c)/(x + b + c)= 2b/(x + 2b )+ (a + c)/(x + a + c) ; TYPE 5 - CASE 1: ax2 + bx + c; CASE 2: ax2 + bx = cx + d
SOLVING CUBIC EQUATIONS - Introduction, Types of Cubic Equations - TYPE 1: ax3 + bx2 + cx + d = 0; TYPE 2: ((x + a)3)/((x + a)3) = (x + c)/(x + d) when N1 + D1 = N2 + D2; TYPE 3: 1/(ax + b) + 1/(cx + d) = 1/(ex + f) + 1/(g3 + h) when D1 + D2 = D3 + D4; TYPE 4: ( (ax+b)/(cx + d) )2 = (ex + f)/(gx + h) when N1 – D1 = N2 - D2
BIQUADRACTIC EQUATIONS - Introduction, Types of Biquadratic Equations - TYPE 1: ax4 + bx2 = 0; TYPE 2: ax4 + bx2 + d = 0
SOLVING SIMULTANEOUS EQUATIONS - Introduction, Types of Simultaneous Equations - TYPE 1: a1x + b1y = c1 and a2x + b2y = c2; TYPE 2: a1x + b1y = c1 and a2x + nb1y = nc1; TYPE 3: ax + by = c1 and bx + ay = c2
PARTIAL FRACTIONS - Introduction, Types of Partial Fractions - Denominator with No Repeated Terms, Order of Numerator and Denominator are Same